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Abstract—The matched asymptotic expansions technique is used to analyse the core and boundary layer
solution of the compressible unsteady viscous one-dimensional Navier-Stokes equations in order to study
the transport at a growth interface due to a homogeneous, sinusoidal in time and slowly varying weuk
gravity field. It is shown that: (a) the mass transfer at the interface is governed by the time dependence of
the specific mass at the isothermal active interface; (b) diffusion occurs in a thin boundary layer in front
of the interface under the form of a damped travelling concentration wave ; (¢) unless very small growth
rates are considered as in some epitaxial growth processes, g-jitters as encountered onboard spacecrafts
have negligible effects on mass transfer at a solid-gas growth interface.

1. INTRODUCTION

Dur 1o the strong decrease of buoyant convection,
sccond-order driving forces may drive significant fluid
motion in nearly zero-gravity conditions. In gases,
fluid motion can be generated by thermomechanical
couplings caused by the compressibility of the
medium. The hydrodynamic modelling of these prob-
lems is based on the low speed compressible Navier—
Stokes equations the solution of which have needed
new numerical methods to be built [1,2]. These non-
divergence free velocity fields caused by the expansion
of compressible layers play a very important role in
transient heat transfer for which asymptotic methods
are very useful to extract the physics of the complex
mechanisms which drive the processes. For example,
Kassoy has used such techniques to explore the
response of a perfect gas contained in a one-dimen-
sional slot to heat addition at one boundary [3-6].

Moreover, it has also been recently shown that sig-
nificant fluid motion could be generated by local
unsteady heat addition [7] showing that transient
mass and heat transfer in gases often deals with ther-
moacoustics and compressibility, even at very low
speed.

All these studies have been devoted to thermally
driven thermomechanical disturbances, that is to say
situations for which the transfer of energy goes from
the thermal energy to the kinetic energy through com-
pressibility. The problem under study in the present
paper is that in which the energy is brought to the
gas through mechanical disturbances caused by time
dependent homogeneous weak gravity perturbations.
More precisely, the purpose of this study is to explore
through a one-dimensional model and analytical
methods the effects of such mechanical disturbances
on a growth interface in order to model the effects of
gravity perturbations on crystal growth experiments
performed onboard spacecrafts in low earth orbit.

To this end, a one-dimenstonal slot 1s considered
filled with a binary gas mixture. onc component ot
which muy undergo a phase change at the interfuce
located at x = 0.

A solution of the one-dimensional unsteady
Navier-Stokes equations coupled with the diffusion
equation is looked for on the time scale of the pertur-
bation by means of the matched asymptotic expansion
technique. The solutions for density, temperature.
velocity, pressure and weight traction are given in the
case of a sinusoidal homogeneous gravity pertur-
bation, the characteristic time of which is in between
the short acoustic scale and the long diffusive one.

The first part is devoted to the pure gas approach
without the interface while the binary gas mixture
with the growing interface is treated in the second
part.

2. MONOCOMPONENT GAS AND NON-
CATALYTIC WALLS

2.1. The model and governing equations

We consider a one-dimensional slot of width L filled
with a perfect gas B and supposed to be in quasi zero-
gravity conditions (Fig. 1). Both ends (x" =0 and 1)
are at an imposed temperature T,,. For 1 < 0 the sys-
tem is at rest and in thermal equilibrium. For ¢ > 0
a homogeneous time dependent acceleration field is
applied in the x-direction. The amplitude is 10~ "y,
(where g, is the ground value of the gravity accel-
eration) and the frequency is 50 Hz. These conditions
are roughly those encountered onboard spacecrafts in
low earth orbit. The motion of the gas is described by
the one-dimensional Navier—-Stokes equations. If the
length is reported to the length of the domain, the
time to the acoustic time ¢, = L;Cj where Cj is the
speed of sound in the initial state, and the other depen-
dent variables reported to their initial value, the
governing equations can be written as
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A amplitude of the momentum source term
C%  sound velocity in the reference state

D diffusion coefficient

L width of the one-dimensional slot

Le Lewis number

M, molar mass of specie x

NOMENCLATURE

z inner space variable.

Greek symbols
a~' molar mass of the mixture
ratio of the specific heats

boundary layer thickness

Y

P o

pressure € small parameter
Pr Prandtl number, «/v p

n small parameter

S momentum source term [P
, . . K thermal diffusivity
t, acoustic characteristic time . L. .
: - T v kinematic viscosity
ty diffusive characteristic time .

. . . P specific mass of the bulk gascous phase
t time normalized with respect to the L .

- P initial value of the specific mass

acoustic time ; ilibrium value of the partial specific

t time normalized with respect to the Pa  cquiibnu ue P P
DA . mass of A at the interface.

characteristic time of the perturbation
T temperature
T, reference temperature Superscripts and subscript
i, initial velocity ()  dimensional variable
w weight fraction of specie A (")  outer variable
W,  initial value of the weight fraction of A (7)  inner variable
X space variable ( )a property related to specie A.

p+(puw), =0 ) The boundary conditions are
pu,+puu, = —y P +teu A+ S 2) u=0, T=1 at x=01 5)

p _ —
y_1 (T,+MT\.) s Pux

+s{—"~ Pr T+ %-z(u,)Z} 3)
y~1
P=pT @)

where p is the specific mass, u the velocity and 7 the
temperature. The initial reference state is pg, uy =0
and T’ = T,. ¢ is the ratio Pr (,/t;) of the acoustic
time ¢ to the diffusion time L*/x where x is the thermal
diffusivity. Pr = k/v, where v is the kinematic
viscosity, and Pr the Prandtl number. S is a momen-
tum source term normalized with respect to a charac-
teristic value S* = p,CoY/L.
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FiG. 1. One-dimensional slot filled with a pure gas B and
non-catalytic walls.

and the initial conditions correspond to the rest and
thermodynamic equilibrium

u=0, T=P=p=1 at t=0. (6)
The source term S is considered to be
S=pAsinwt t=20 @)
where
AL
=— d o't 8
A o and w'¢ 8)

2.2. Outer solution

The main scaling laws and domain of the asymp-
totic analysis are summarized on Fig. 2.

2.2.1. Scaling. The considered values for the ampli-
tude and frequency of the residual acceleration field
(g = 107 %g,, f* = 50 Hz) lead to

A=10"" and w=0.1. )

-————— - f————————————————————— P -~

Inner . Inner
' region Outer region ' region '
[x=00(E)) r=om | |

F1G. 2. One-dimensional slot filled with a perfect binary gas
mixture A+ B and with a growth interface at x = 0.
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Equation (9) for @ indicates that the time scale of the
perturbation 7 = wt is longer than the acoustic scale ¢
but shorter than the diffusive scale t = &z. Solution
for equations (1)—(7) is looked for on the time scale
of the perturbation by setting the new time scale to

r= ot (10)

As equation (9) for A indicates that the source term
is a small perturbation. the coupled thermodynamic
variables are looked for under the form of the fol-
lowing asymptotic expansions:

P=1+vP(x.0)+0(v) (11)
T=1+vT(x,t)+o0(v) (12)
p=l1+vp(x.0)+o(v) (13

while the velocity is expanded as
u=ni(x,1)+o(n) (14)

where v and # are to be determined.
The continuity equation (1), written in terms of the
perturbed variables

v+, =0 (13)
suggests to consider for u the scaling
M= v

and substitution of this scaling in equations (1)—(7)
gives

P=T+p (16)
pr= —1i (17)
T = — (=i, (18)

In order to enable the source term to drive a flow
through the pressure gradient, the scaling for P, p and
T must be
v=A (19)
to give
P.=7ysint (20)

The perturbed flow field is thus described by equations
(16)-(18) and (20) together with boundary conditions

T=0=0 at x=0.1 2N
and initial conditions
i=T=P=p=0 at t=0. (22)

2.2.2. Core solution. The solution of equations (16)—
(20) with conditions (21) and (22) is straightforward
and can be written as

d(x,f) = 3 (1—x)cos T (23)
Ple,t) =y(x=Y)sint 24
3 3 (25)

plx, 1) = (x—-sint

T(x,0) = (;— ) (x—Y)sint. (26)

1831

Solution (27) for T does not satisfy condition (21) at
x = 0.1. This indicates that solution (23)+26) 15 an
outer (core) solution for equations (1)-(7). This
means physically that on the short time scale 7 of
the perturbation (compared to the diffusive one). the
pressure work source term 4, in the energy equation
has no time to diffuse.

A thermal boundary layer exists in the neigh-
bourhood of x = 0.1 even though the boundary con-
ditions are satisfied for v. An inner solution has to be
looked for in these regions.

2.3. Boundary laver solution

The boundary layers near x = 0. | are very similar
and only the solution in the neighbourhood of x = 0
is treated here.

2.3.1. Boundary laver scaling and governing equa-
tions. In the core, the outer expansion holds

T=1+vT+o(v). (27

So that

Hm 7T(x, T) = L4+ vT(0. 1) = o(r)

o )

which suggests to look for the boundary laver solution
under the form of the following inner asvmptotic
expansion:

T=1+vT(z,D)+o(v) (28)
where = is the boundary layer variable defined by

X

5
3 (29)

in which d is the boundary layer thickness to be deter-
mined. Similar arguments suggest to look for the inner

solution for P and p under the following expansions:
P= l+v13(z. D +o(v) (30)
p=14+v5(z,0) +o(v). (31)

On the other hand, solution (23) being regular for
x-0

lril% w(x, £y = lvwdcos 124+ O(vwd?)
gives the scaling for v in the boundary layer and the
Inner asymptotic expansion
u = vadi(z, 1) + o(vod). (32)
The matching conditions for T(z.7) are
lim =10 = li_{ré T(x,t) = {1 =7)sint.

Substituting inner expansions (28) and (30)-(32) in
the Navier—-Stokes equations, gives

P=T+p (33)
P.=0 (34)
pr= —u. (35)

and
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voT; = vo(y— )i +y Pr-' evT../82

which gives the boundary layer thickness § by mat-
ching the temporal term with the diffusion one, that

is to say
g \/<8>
(@)

which leads to the energy equation in the boundary
layer

(36)

-~

Tr=—@-Da+yPr'T.. (37)

The governing equations for the boundary layer solu-
tions are thus equations (33)-(35) and (37), with:

boundary conditions

i=T=0 at r=0; (38)
matching conditions
T >—Tsini at zowm (39)
o - Yy . -
P(z,t)—»—;smt at - o0; (40)
and initial conditions
i=T=P=p5=0 at 1=0. e

2.3.2. Boundary layer solution for T. From equations

(35), (34) and (33)
i, = T;— P 42)

Substituting equation (42) into equation (37) we
obtain

~ -1 -
T;=Pr! T::—y——cost

> 3

with, for T, boundary condition (38), matching con-
dition (39) and initial condition (41). By setting

~ y—1 -
0=T+yTsint

governing equations for 8 are

/0;=PI'_10::
—1 -
9=y—sint at z=0
-0 at x-—-o©
6=0 at 7=0. (44)

The Laplace transform gives the solution for 8 and
thus for T(z, 7)

~ - 7—1 : -
T =1 3 {e‘~"”’f’2’-' sin (t—\/(%):)

1 (= e—ul' ) o
+;'[) msm(z\/(Pru))du—smt}. (45)

The first term in equation (45) represents a damped
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travelling wave, while the second term represents a
transient term which goes to zero as 7 — 0. The third
term matches 7z, 7) with the core temperature field.
2.3.3. Boundary layer solution for the velocity. From
equation (35)
i, = T:— P;
and invoking equation (37) leads to
IJ:=PI'_IT_,:—'Y~IP';(I—) (46)

which gives under integration
a(z,0) = Pr' T.— g P +C".

Now, taking into account 7z, f) to get 7. and bound-
ary condition (38) for u to get C*, the solution for u,
the transient being ignored, can be written as

A _l ) ,
a1 = = o= P "'2{e-ﬂ"~2’:

i - \/ Pr . (- ‘/ Pr
xX<sin| t— _2— z )+ cos t-\, —2— z
—sin f—cos f}—%%cost_. 47

The term iz cos 7 in equation (47) is the driving vel-
ocity field as x —» 0 near the boundary. The other
terms correspond to the expansion or the contraction
of the thermal boundary layer under the external oscil-
lating thermal solicitation.

Considering now lim,_, ,, u(z, f), it becomes

=
2/(2Pr)

+4vox cost

lim u(z, 1) = vwd (sin 74-cos ?)

= lin(l) i(x, 1) + O(ved)

which proves that the matching conditions are fulfilled
up to the retained order O(vw).

The extra term O(vwd) represents an oscillating
piston effect, analogous to that of ref. [3]. This piston
effect will drive the next approximation under the
form of a mechanical disturbance in the core flow, of
order O(vwd). The asymptotic sequence for the core

expansion is thus
u = voi(x, 1)+ vadi(x, 1) + o(vad). (48)

2.3.4. Boundary layer solution for p. From equation
(33), the solution for j(z, f) is obviously

- y—1 - P .-
oz, t) = — Z—z—e—\/(”’””sin (t—\/(%)z)—% sin .

(49)
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FiG. 3. One-dimensional slot filled with a binary mixture and
bounded with a catalytic wall at x = 0.

3. BINARY GAS MIXTURE AND CATALYTIC
WALL

3.1. The model and governing equations

The model is the same as in Section 1 except that
the slot is filled with a binary perfect gas mixture, one
component of which A, undergoes a phase change at
x = 0 while the other, B, is inert (Fig. 3).

The Navier-Stokes equations are coupled with the
species transport equations which can be written as

& p. € ;
W, — — |\W, =—W
o (u Le Pr p) Y LePr % (50)
Le = x;D, where D is the diffusion coefficient, Le
the Lewis number, and W the weight fraction of A.
The state equation is that of a perfect gas mixture

P = paT
where
o Mg— M, I
= and zx=-—S"Awy
= e = U,

where M, and My are the molar masses of A and B.

The initial and boundary conditions are the same
as in Section 1, except for the velocity at x = 0 for
which the species balance can be written as

g Ww.
—— at x=0

“Tlepr <i{7€ 1>
)

for which it has been supposed that the transfer at the
interface is diffusion limited [8]. W5, is the equilibrium
weight fraction defined by

(51

W = pa(T)

where p4%(T) is the equilibrium value of the partial
specific mass of A which is dependent on the interface
temperature.

Astheend at x = 1 isclosed the boundary condition
for W is of the Neuman type

W.=0 at x=1
we
P

W

The initial condition for
equilibrium

W is the thermodynamic

W=Wws at r=0. (33)

The governing equations for the binary mixture with
catalytic walls are thus equations (1)—(4) and (50) with
boundary conditions (5), (51) and (52), and initial
conditions (6) and (53).

3.2. Outer solution

3.2.1. Scaling and governing equations. In the saume
way as in Section 2.3.1, the solution is looked for on
the time scale of the perturbation. Taking into account
expansions (11)-(13) and (14) and (15) as well as

W= W+ v W(x, t)+o(v) 154)
the governing equations for the outer solution are

P = “sin 1

P=T+p+nl

P o Me =My 1

ok Wik, TOM My T T T M,
pr= —a,

T;= —(;~-Da,

W= (35)

with boundary conditions
T=0. W= —Wip(0,1).
T=0,

a0.0)  at

W.=0, d=0 at x=1 (56)

and initial conditions
=0,

T=0, W=ws at i=0.

The solution for equation (54) for W is

Wix,1) =0 (37)
and boundary condition (56) for u becomes
=0 at x=0. (58)

Equation (57) means that on the time scale of the
perturbation which is short compared to the diffusion
one, no diffusion has time to occur in the bulk.

However, as boundary condition (56) for H'is not
satisfied by the core solution (57). this core solution
is not regular for x = 0. The asymptotic expansion
(54) for W is not uniform in the neighbourhood of
x =0

According to the matched asymptotic expansion
technique, an inner expansion must be introduced.
which is constructed with an inner variable - defined
by
(59)

8(e)—0 when ¢—0



1834

where d(¢) is given by the least degeneracy principle
applied to the whole diffusion equation written in
terms of the inner variable z.

The remainder of the core solution for u, P, T and
p, are here too given by equations (23), (24), (27) and
(26).

3.3. Boundary layer solution at x = 0

From solution (27) for T(x, ¢) and boundary con-
ditions (21) and (56) for W(x, ¢) two boundary layers
exist for Tat x = 0, 1 and for W at x = 0. As we are
essentially interested in what follows in the behaviour
of the interface, the boundary layer solution near
x = 0 is only studied.

3.3.1. Scaling and governing equations. In the same
way as in Section 2.3.1, the outer expansion scaling
for the thermodynamic variables leads to inner expan-
sions (28), (30) and (31) for 7, P and p. Now con-
sidering boundary condition (56) for W, it appears

that the inner expansion for Wis
W= W$+vW(z,1)+o0(v). (60)

The least degeneracy principle which matches the tem-
poral and diffusive terms in equation (50) written in
terms of the inner variables, that is to say for the
functions

W(x, 1) = W@, 1) = W(z,1)

=
w

and leads to the inner boundary condition scaling for
u

suggests to consider

(61)

Pr Le(I’I}E— 1) 62)

u:v\/(ga)) at x=0
which suggests to consider as the inner expansion for
u

u = v,/ (ew)i(z, 1) + o(vy/ (ew)). (63)
This scaling matches with the outer solution as
fim u(x, ) = {vw(dz cos 1+ 0(d)). (64)

This means physically that the thermal disturbance in
the core caused by the pressure work induces velocity
disturbances in the boundary layer which are of the
same order of magnitude as the interface velocity
induced by density disturbances; as a matter of fact,
substituting equation (61) for § in equation (64) leads
to

vad = v/ (ew).

Under these scalings, the governing equations for the
boundary layer solution near x = 0 are

B. ZappoLl

pr= —i.
Ii=y Pr' T~ (7= Vi,
~ |
Y 63)
with boundary conditions
Bm ot = — 0,1,
PrLe(Wgy—1)
T=0 at z=0 (66)
matching conditions at z —
W(z,0) -0
Tz 1) - 7=t sint
2
Pz, D> — %sin r
#(z.0) = - cos T (67)
and initial conditions
W=T=d=p=P=0 at 1=0. (68)

3.3.2. Boundary layer solutions for W. The boundary
layer solution is obtained by the Laplace transform
technique from equations (65)-(68) for W

Wz, 0 = u2/° {e_\/((Prle),‘Z): sin (;_\/(PrzLe)z>

+ _I_J‘x _e.:i_ sin (_'\/(Le Pr M)) du} (69)

7)o 14u®

The second term represents a transient state and the
first term represents a damped travelling concentra-
tion wave. The penetration length for the permanent

state
2 1/2
b= (Le Pr> o

is of the order of the boundary layer thickness J, and
the velocity of the travelling wave

2 /2
v, = (m) dw

is larger than the diffusion velocity.

3.3.3. Boundary layer solution for T. Substituting
for 4. in equation (65) for T, equation (65) for 5 and
P, it gives

~ o~ y—1 -
To=Pr' T+ ’T (Pi—&W).  (10)
In order to reach a simplified description of the prob-

lem, we choose to ignore the solutal effects, that is to
say that we suppose M, = M in order to have
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S=0. hH

In these conditions, equation (65) and matching con-
ditions (67) for B, equation (65) for T and conditions
(66) and (67) define the same problem as in Section
2.3.2 and solution for T in the case where M, = M,
(2 = 0) is thus equation (45).

3.3.4. Boundary layer solution for u. From equation
(65) for i. and P, and taking into account condition
(71), it comes under integration of the obtained equa-
tion over =

iz )= Pro' .=~ P+ C. (72)
From solution (45) for Tz, boundary condition
(66) for i at = = 0 and solution (69) for W, solution
for i is. if the transient term is ignored

ny

- -1 » o
iz, 1) = — “5—(@2pPr)~! '{e\“”z)'-'

(oo (= (5 )

~(sin {+cos f)}

W - -z -
- sin t+¢os )+ = Cos 1.
2LaJ(2Pr)(W§,——1)( ) 2

(73)

The first two terms in equation (73) represent the
contribution of the thermal disturbances in the
boundary layer, to the fluid velocity.

The third term is the contribution of the phase
change at the interface at z = 0; the fourth term is the
driving velocity field in the bulk as x — 0.

Taking now the limit when = — o2 for u(z, ¢) with
x « 1 and x — 0, it becomes

) - X - Y - -
lim u(z,1) = vo 5 cos 1+ vwd(2Pr)~ Y2(sin 1+cos 1)

L] we
2 T 2Le(W5—1)

= lim u(x, 1) + O(vws).

=0

v d

The matching conditions are fulfilled and the term
O(vwd) represents the velocity at the edge of the
boundary layer which gives the order of magnitude
of the next term in the outer expansion for u. This
oscillating piston effect will drive a new disturbance
of mechanical origin in the core; the driving velocity
Uy for this perturbation is

Up = U(0,7) = (2Pr)~ " *(sin 7

_{ -1 W
reosO\ 5T = sy )

| —] —
[ 11
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Table 1. Comparison between velocity per-
turbations and Stefan velocity for two growth
conditions, L = 10 cm

Case | Case 2

Ch(ms™) 130 130
P'(Torr) 0.1 1

D (em®s™) 120 154
Ubieran (ums™") 186x 107 0.440

U (ums™"): interface 0.835 0.282

bulk

7.5 7.5

Term I represents the overall expansion of contraction
of the boundary layer under the thermal disturbances
of the core flow caused by the work of pressure forees.
Term II represents the expansion or contraction of
the boundary layer due to the evaporation or con-
densation of the crystal under mechanical (density)
disturbances in the bulk.

It must be emphasized that no solutal effect is pre-
sent because ¢ =0: when {# 0 [9] diffusion of a
heavy specie for example will cause an increase in p
and a contraction of the boundary layver und this
phenomenon is not taken into account here.

4. ORDER OF MAGNITUDE

It has been shown that the order of magnitude of
the velocity in the bulk at the interface was the same
as that of the velocity in the boundary layer, that is
to say

u=0(v'(ew))

while the velocity perturbation in the bulk is of the
order of vw’. Comparison of these velocity per-
turbations with the typical velocity encountered in
Hgl, growth experiments are summarized on Table 1.
For systems for which the pressure is 0.1 Torr or less,
growth rates between 1 and 0.5 mm day~ ' have been
observed [10] and are represented by case 1.

For pressure increases of about 1 Torr of argon,
the growth rates are very low because the diffusion
strongly decreases and growth velocities as low as
107° mm day~' have been observed and are rep-
resented by case 2.

It has been supposed that the order of magnitude of
the velocity perturbation is independent of the initial
conditions. As a matter of fact, in order to compare
with typical growth rates, a different initial value prob-
lem should have been studied for which the basic
flow is a Stefan flow between a source and a sink.
Nevertheless it can be seen in Table I that for low
pressure systems. both interfacial and bulk per-
turbations are negligible compared to the Stefan wind.
However, for case 2, the bulk perturbation is one
decade higher than the basic flow while the interfacial
velocity perturbation is of the same order as the Stefan
velocity. This points out that for high pressure exper-
iments for which the growth velocity is very small,
perturbations caused by g-jitters may be taken into



1836

account. On the other hand, in some experiments such
as epitaxial growth of germanium, the etching of the
substrate to which corresponds very small velocities
[t1, 12] may come from such mechanical pertur-
bations.

5. CONCLUSION

The core and boundary layer solutions have been
obtained for the response of a solid—gas growth inter-
face to small periodic disturbances of a basically zero
gravity field.

It has been shown that for typical values of the per-
turbations in the gravity encountered onboard space-
crafts in low earth orbit, say 10~ %g, and f = 50 Hz,
the perturbation in the core velocity is of the order of
10~ * cm s~ ' while the perturbation in the velocity at
the interface may be of the same order as the Stefan
velocity for high pressure growth conditions when
considering mercury iodide typical values. This means
that unless very small growth velocities are considered
as it is the case for some epitaxial growth processes,
g-jitters, as those encountered in spacecrafts have neg-
ligible effects on the mass transfer. However, the per-
turbations in weight fraction at the interface are of
the order of 10~7; under steady state growth, and not,
as in the present case, under thermodynamic equi-
librium reference state, will these oscillations produce
significant oscillations in dopant concentration in the
grown crystal. This would be interesting to check
experimentally.

On the other hand, it would be interesting to look
at the influence of the molar mass difference on the
contraction or expansion of the boundary layer. In
the same way, non-equilibrium transfer could be
introduced through mixed type boundary conditions

B. ZappoLl

for the species equations and would lead to a phys-
ically more significant description. Moreover, a gener-
alization of this study to higher frequency for which
acoustic modes could be excited would certainly lead
to interesting new features concerning interaction
between acoustics and crystal growth.
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REPONSE D’UNE INTERFACE DE SOLIDIFICATION SOLIDE-GAZ A UN CHAMP
D’ACCELERATION HOMOGENE DEPENDANT DU TEMPS

Résumé—La technique des développements asymptotiques raccordées est utilisée pour analyser les solu-
tions intérieures et extérieures des équations de Navier-Stokes 1-D instationnaire et compressible pour
étudier le transport 4 une interface di 4 un champ d’accélération faible et variant sinusoidalement dans le
temps de maniére lente. 1l est montré que: (a) le transfer de masse 2 P'interface est gouverne par la
dépendance temporelle de la masse spécifique du gaz sur l'interface ; (b) la diffusion des espéces intervient
dans une couche limite mince située devant I'interface de croissance ; (c) a moins de considérer des vitesses
de croissance trés faibles comme c’est le case pour certains procédés de croissance épitaxiale, les g-jitters
tels qu’on les rencontre & bord des véhicules spatiaux ont des effets négligeables sur le transfert de masse
a un interface de croissance solide gaz.



Response of a solid -gas growth interface to a homogeneous time dependent acceleration field

VERHALTEN EINER WACHSENDEN PHASENGRENZFLACHE ZWISCHEN FESTEM
IND GASFORMIGEM ZUSTAND IN EINEM HOMOGENEN, ZEITLICH
VERANDERLICHEN BESCHLEUNIGUNGSFELD

Zusammenfassung—Das Verfiahren der angepalBten asymptotischen Entwicklungen wird zur Lésung der
kompressiblen, instationdren. reibungsbehafteten Navier-Stokes-Gleichungen fiir den Kern- und Grenz-
schichtbereich verwendet. Damit sollen die Transportvorgiinge an der Grenzfliche beim Kristallwachs-
tum untersucht werden, die sich infolge eines homogenen, zeitlich sinusfdrmig und langsam veridnderlichen
Beschleunigungsfeldes ergeben. Es zeigt sich folgendes: (a) Der Stofftransport an der Grenzfliche wird
von der Zeitabhiingigkeit der spezifischen Masse an der isothermen aktiven Grenzfliche bestimmt: (b) in
einer diinnen Grenzschicht unmittelbar vor der Grenzfliche tritt Diffusion aufgrund einer geddmpften.
wandernden Konzentrationswelle auf; (c¢) auBer bei sehr kleinen Wachstumsgeschwindigkeiten, wie
sie bei einigen epitaxialen Wachstumsvorgiingen vorkommen, haben g¢-Gitter einen vernachlissigharen
EinfluB auf den Stofftransport an einer fest-gasfdrmigen Wachstumsoberfliche.

BJIUAHWUE OJHOPOJHOI'O HECTALIMOHAPHOI'O 110J11 YCKOPEHHUA HA POCT
I'PAHHNLBI PA3JEJIA TBEPJOE TEJIO-TA3

AnsoTamus—MeTo10M CpalllMBaHHA ACHMITOTHYECKHX PAa3IOKEHHH aHAHIUPYIOTCA PELUeHHS ypaBHe-
Huii HaBbe-CTOKCa ANA HECTALHOHAPHOIO TEYCHUA CAKHUMAEMO# BA3KON KHAKOCTH B AOpE W MOTPaHHH-
HOM CJIO€ IPH MCCIIEROBAHHM NpOLlecca NMePeHOca y FpaHMLbl pa3aesia, pacTyuleif B pe3ysibTaTe IeHCTBHA
ONHOPOOHOTO, CHHYCOHIANLHOTO BO BPEMEHH H MEMUIEHHO H3MEHsIollerocs ciaaboro monas CHIbI
TaxecTH. [TokasaHo, 4To: (a) MacCONEPEHOC OMHCHLIBAETCA BPEMEHHON 3aBHCHMOCTBIO YAENBLHOR Macchl y
H30TEPMHYECKOR AKTHBHOM I'paHKib! paznena; (6) muddy3ns NPOHCXOOHT B TOHKOM MOrPAHHYHOM CJlIOE
nepen rpaHuuedl paszfena B BHAE 3aTyxarowedl Geryuiedl BOJIHbE KOHLEHTPALMH; (B) 33 HCKIIOYEHHEM
Clty4yaeB O4eHb HM3KHX CKOPOCTeH POCTa, HMEIOLHX MECTO IIPH HEKOTOPBIX MPOLEcCax AIMTAKCHAIBLHOIO
pocTa, HabmonaeMble Ha KOCMHYECKHX KOpabasx H3MCHEHHS YCKOPCHHA OKa3bIBAFOT HE3HAHHTE/IbHOE
BTHAHHE Ha MAcCONMEPEHOC Y PacTyluei rpaHuilbl pasaena TBepaoe Teno—ras.



