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Abstract--The matched asymptotic expansions technique is used to analyse the core and boundary layer 
solution of the compressible unsteady viscous one-dimensional Navier-Stokes equations in order to study 
the transport at a growth interface due to a homogeneous, sinusoidal in time and slowly varying weak 
gravity field. It is shown that : (a) the mass transfer at the interface is governed by the time dependence of 
the specific mass at the isothermal active interface ; (b) diffusion occurs in a thin boundary layer in front 
of the interface under the form of a damped travelling concentration wave, (c) unless very small growth 
rates are considered as in some epitaxial growth processes, #-jitters as encountered onboard spacecrafts 

have negligible effects on mass transfer at a solid-gas growth interface. 

1. I N T R O D U C T I O N  

Dt]: [o the strong decrease of buoyant convection, 
second-order driving forces may drive significant fluid 
motion in nearly zero-gravity conditions. In gases, 
fluid motion can be generated by thermomechanical 
couplings caused by the compressibility of  the 
medium. The hydrodynamic modelling of  these prob- 
lems is based on the low speed compressible Navier -  
Stokes equations the solution of  which have needed 
new numerical methods to be built [1,2]. These non- 
divergence free velocity fields caused by the expansion 
of compressible layers play a very important  role in 
transient heat transfer for which asymptotic methods 
are very useful to extract the physics of  the complex 
mechanisms which drive the processes. For  example, 
Kassoy has used such techniques to explore the 
response of  a perfect gas contained in a one-dimen- 
sional slot to heat addition at one boundary [3-6]. 

Moreover,  it has also been recently shown that sig- 
nificant fluid motion could be generated by local 
unsteady heat addition [7] showing that transient 
mass and heat transfer in gases often deals with ther- 
moacoustics and compressibility, even at very low 
speed. 

All these studies have been devoted to thermally 
driven thermomechanical disturbances, that is to say 
situations for which the transfer of  energy goes from 
the thermal energy to the kinetic energy through com- 
pressibility. The problem under study in the present 
paper is that in which the energy is brought to the 
gas through mechanical disturbances caused by time 
dependent homogeneous weak gravity perturbations. 
More precisely, the purpose of  this study is to explore 
through a one-dimensional model and analytical 
methods the effects of  such mechanical disturbances 
on a growth interface in order to model the effects of  
gravity perturbations on crystal growth experiments 
performed onboard spaceerafts in low earth orbit. 

To this end, a one-dimensional slot is considered 
filled with a binary gas mixture, one component of 
which may undergo a phase change lit the intcrlacc 
located at x = 0. 

A solution of  the one-dimensional unstead? 
Navier-Stokes equations coupled with the diffusion 
equation is looked for on the time scale of  the pertur- 
bation by means of the matched asymptotic expansion 
technique. The solutions for density, temperature. 
velocity, pressure and weight fraction are given in the 
case of  a sinusoidal homogeneous gravity pertur- 
bation, the characteristic time of which is in between 
the short acoustic scale and the long diffusive one. 

The first part is devoted to the pure gas approach 
without the interface while the binary gas mixture 
with the growing interface is treated in the second 
part. 

2. M O N O C O M P O N E N T  GAS A N D  N O N -  
CATALYTIC WALLS 

2.1. The model and governing equations 
We consider a one-dimensional slot of  width L filled 

with a perfect gas B and supposed to be in quasi zero- 
gravity conditions (Fig. 1). Both ends (x" = 0 and L) 
are at an imposed temperature To. For  t < 0 the sys- 
tem is at rest and in thermal equilibrium. For t >/0 
a homogeneous time dependent acceleration field is 
applied in the x-direction. The amplitude is 10 :q,, 
(where g0 is the ground value of  the gravity accel- 
eration) and the frequency is 50 Hz. These conditions 
are roughly those encountered onboard spacecrafts in 
low earth orbit. The motion of  the gas is described by 
the one-dimensional Navier-Stokes equations. If the 
length is reported to the length of  the domain, the 
time to the acoustic time t~ = L,,C{, where C{~ is the 
speed of  sound in the initial state, and the other depen- 
dent variables reported to their initial value, the 
governing equations can be written as 
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NOMENCLATURE 

A amplitude of the momentum source term 
C~ sound velocity in the reference state 
D diffusion coefficient 
L width of the one-dimensional slot 
Le Lewis number  
M~ molar mass of specie x 
P pressure 
Pr Prandtl number,  ~c/v 
S momentum source term 
t~ acoustic characteristic time 
t~ diffusive characteristic time 
t time normalized with respect to the 

acoustic time 
t" time normalized with respect to the 

characteristic time of  the perturbation 
T temperature 
To reference temperature 
u o initial velocity 
W weight fraction of specie A 
Wo initial value of the weight fraction of A 
x space variable 

- inner space variable. 

Greek symbols 
- * molar mass of the mixture 

7 ratio of the specific heats 
6 boundary layer thickness 

small parameter 
,7 small parameter 

thermal diffusivity 
v kinematic viscosity 
p specific mass of the bulk gaseous phase 
P0 initial value of the specific mass 
p~ equilibrium value of the partial specific 

mass of A at the interface. 

Superscripts and subscript 
( ) ' dimensional variable 
C-) outer variable 
(~) inner variable 
( )A property related to specie A. 

pt+(pu)x  = 0 (l)  

pu,+puux = -7 -1P~+~.U~.~+S (2) 

P ( T , + u T ~ ) = - - P u ~  
7--1 " " 

P = p T (4) 

where p is the specific mass, u the velocity and T the 
temperature. The initial reference state is Po, u~ = 0 
and T'  = T~. e is the ratio Pr (t'Jt'~) of  the acoustic 
time t~ to the diffusion time L2/x where x is the thermal 
diffusivity. P r =  K/v, where v is the kinematic 
viscosity, and Pr the Prandtl  number.  S is a momen- 
tum source term normalized with respect to a charac- 
teristic value S* = p'oC~'/L. 

To\ 

\ 

\ 

\To 
\ 

B ]" 
\ 
\ 

L 

FIG. I. One-dimensional slot filled with a pure gas B and 
non-catalytic walls. 

The boundary  conditions are 

u = 0, T =  1 at x = 0.1 (5) 

and the initial conditions correspond to the rest and 
thermodynamic equilibrium 

u = 0 ,  T = P = p =  1 at t = 0 .  (6) 

The source term S is considered to be 

S = pA sin cot t/> 0 (7) 

where 

A ' L  
A = ~ - , ,  and co't~. (8) 

t o - 

2.2. Outer solution 
The main scaling laws and domain of the asymp- 

totic analysis are summarized on Fig. 2. 
2.2.1. Scaling. The considered values for the ampli- 

tude and frequency of the residual acceleration field 
(g = 10- -'go, f '  = 50 Hz) lead to 

A =  10-7 and co=0.1 .  (9) 

Inner Inner 
I region [ Outer region region 

[x=O(~f~))] T=O(O 

FIG. 2. One-dimensional slot filled with a perfect binary gas 
mixture A+B and with a growth interface at x = 0. 
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Equation (9) for oo indicates that the time scale of the 
perturbation i" = an is longer than the acoustic scale t 
but shorter than the diffusive scale ~ = at. Solution 
for equations (1)-(7) is looked for on the time scale 
of the perturbation by setting the new time scale to 

7=  e~t. (10) 

As equation (9) for A indicates that the source term 
is a small perturbation, the coupled thermodynamic 
variables are looked for under the form of the fol- 
lowing asymptotic expansions : 

P = 1 +vP(x,  7)+o(v)  (11) 

T =  l +,,7~(x, 7) + o(v) (12) 

p = 1 +vf i (x , t ' )+o(v)  (13) 

while the velocity is expanded as 

u = r/zi(.v, 7) +o(q) (14) 

~here v and r/are to be determined. 
The continuity equation (1), written in terms of the 

perturbed variables 

v(ofi; + ~lti, = 0 (15) 

suggests to consider for u the scaling 

"l = V¢_O 

and substitution of this scaling in equations (1)-(7) 
gives 

P = 7=+ff (16) 

fir = -Kx (17) 

7=; = - ( / -  1)ff~. (18) 

In order to enable the source term to drive a flow 
through the pressure gradient, the scaling for P, p and 
Tmust  be 

v =  A (19) 

t o  give 

P~ = 7 sin 7. (20) 

The perturbed flow field is thus described by equations 
(I 6)-(18) and (20) together with boundary conditions 

7 = = i f = 0  at x = 0 . 1  (21) 

and initial conditions 

~ = 7 = = P = f i = 0  at 7 = 0 .  (22) 

2.2.2. Core solution. The solution of equations (16)- 
(20) with conditions (21) and (22) is straightforward 
and can be written as 

X 
if(x, t') = ~ ( 1 - x ) c o s  i" (23) 

P(x, "i) = 7 ( x -  ½) sin t" (24) 

,6(x, i) = (x - I.,) sin t- (25) 

T(x, i') = ( 7 -  l ) ( x -  21) sin i. (26) 

Solution (27) for Tdoes  not satisfy condition (21) at 
x = 0.I. This indicates that solution (23)-(26) is an 
outer (core) solution for equations (1)-(7). This 
means physically that on the short time scale t-of  
the perturbation (compared to the diffusive one), the 
pressure work source term ff~ in the energy equation 
has no time to diffuse. 

A thermal boundary layer exists in the neigh- 
bourhood of x = 0.1 even though the boundary con- 
ditions are satisfied for u. An inner solution has to be 
looked for in these regions. 

2.3. Boundary layer solution 
The boundary layers near x = 0, l are very similar 

and only the solution in the neighbourhood of x = 0 
is treated here. 

2.3.1. Boundary la.ver scaling and gocerninq equa- 
tions. In the core. the outer expansion holds 

T = 1 + v7=+o(v). 127) 

So that 

!ira T(x, 7 ~) = 1 + v 7=(0, 7) + o(v) 

which suggests to look lbr the boundary, layer solution 
under the form of the following inner as.vmptotic 
expansion : 

T = 1 +vT=(z,i)+o(v) (28) 

where z is the boundary layer variable defined by 

X 
z = - (29) 

6 

in which 6 is the boundary layer thickness to be deter- 
mined. Similar arguments suggest to look for the inner 
solution for P and p under the following expans ions  

P = 1 + v P ( z , { ) + o ( v )  (30) 

p = l+vfi(z ,  7)+o(v). (31) 

On the other hand, solution (23) being regular for 
.'C "--'+ 0 

lira u(x, [) = !vc,0~ cos 7z + O(ve)~5 z) 
r ~ 0  

gives the scaling for u in the boundary layer and the 
inner asymptotic expansion 

u = vm3fi(z, i) +o(veJ6). (32! 

The matching conditions for T(z, t) are 

!im 7=(z,/) = .,-lim- 7=(x, t) = ~(1 - 7 )  sin { 

Substituting inner expansions (28) and (30)-(32) in 
the Navier-Stokes equations, gives 

P = T+f i  ~33) 

/~. = 0 ( 3 4 )  

~; = - ~  (35) 

and 
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vogl'z = v~(7-- l)fi:+ 7 Pr - '  evT::/62 

which gives the boundary layer thickness 6 by mat- 
ching the temporal term with the diffusion one, that 
is to say 

which leads to the energy equation in the boundary 
layer 

7~ = - - (7- - l ) f i :+7  P r - '  T::. (37) 

The governing equations for the boundary layer solu- 
tions are thus equations (33)-(35) and (37), with : 

boundary conditions 

= T = 0  at t = 0 ;  (38) 

matching conditions 

T(z, i) --, ~ sin i" at z ~ o~ (39) 

P(~, 7) --, ~ " -9 :s lnt"  at t - - ,co;  (40) 

and initial conditions 

a = ~ = P = ~ = 0  at t = 0 .  (41) 

2.3.2. Boundary layer solution for T. From equations 
(35), (34) and (33) 

fi: = T;-- e~. (42) 

Substituting equation (42) into equation (37) we 
obtain 

~?=er_lL: 7 - 1  ~" COS t" (43) 

with, for ~, boundary condition (38), matching con- 
dition (39) and initial condition (41). By setting 

0 = T +  ~ sin 7 

governing equations for 0 are 

Or = Pr-  i 0:: 

O = ~ s i n 7  at z = O  

0 ~ 0 '  at x - - , m  

0 = 0  at 7 = 0 .  (44) 

The Laplace transform gives the solution for 0 and 
thus for T(z, [) 

---- . - Pr T(2, ')7~21{e-.,i(#'ri2'zsln(tiT(~)2 ) 
l [ ' :  e-"' 

+7,Jo l-~u "-sin(z~l(pru))du-sin . (45) 

The first term in equation (45) represents a damped 

travelling wave, while the second term represents a 
transient term which goes to zero as t'---, oo. The third 
term matches T(z, t) with the core temperature field. 

2.3.3. Boundary layer solution for the celocity. From 
equation (35) 

fi: = TT-- Pi" 

and invoking equation (37) leads to 

fi: = Pr-I  ~= - 7 - i / ~ t ' )  (46) 

which gives under integration 

ti(z, t') = e r - '  7": - z p~(~.) + Cte. 
7 

Now, taking into account T(z, i') to get T= and bound- 
ary condition (38) for u to get C ~°, the solution for u, 
the transient being ignored, can be written as 

fi(z, t) = e -  1 { 2 (2Pr)- t...2 e-,/(erl2): 

x {sin ( i ' -  X / ( - ~ ) z )  + cos (~" I f P r ' ~ z ~  t, t,T) ) j  

- s i n / ' - c o s  7} +2  cos [. (47) 

The term ~z cos t'in equation (47) is the driving vel- 
ocity field as x--* 0 near the boundary. The other 
terms correspond to the expansion or the contraction 
of the thermal boundary layer under the external oscil- 
lating thermal solicitation. 

Considering now lim.._:~ u(z, [), it becomes 

l imu(z ,?)=vo96 7 - 1  (sini+cost ' )  
---:~ 2x/(2Pr ) 

+ ½vcox cos 7 

= lim i f (x ,  ~) + O(ve~6) 
x ~ O  

which proves that the matching conditions are fulfilled 
up to the retained order O(v¢o). 

The extra term O(vco6) represents an oscillating 
piston effect, analogous to that of ref. [3]. This piston 
effect will drive the next approximation under the 
form of a mechanical disturbance in the core flow, of 
order O(vto6). The asymptotic sequence for the core 
expansion is thus 

u = vcoff(x, "[) + vco6ff(x, [) + o(vo96). (48) 

2.3.4. Boundary layer solution for  p. From equation 
(33), the solution for ~(z, Z) is obviously 

( - 7 ( " ) )  ' 7-- 1 e_U(erl2):si n t -  - 2  ~(z, t-) = 2 ~ z sin [. 

(49) 
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FIG. 3. One-dimensional slot filled with a binary mixture and 
bounded with a catalytic wall at x = O. 

1 4 " ~ = 0  at  x =  l 

14'5, 
W = -  at  x = 0 .  ( 5 2 )  

P 

The initial condition for 14" is the therrnodvnamic 
equilibrium 

W =  W~; at F=  0. (53) 

The governing equations for the binary mixture w-ith 
catalytic walls are thus equations (1)-(4) and (50) with 
boundary conditions (5), (51) and (52), and initial 
conditions (6) and (53). 

3. B I N A R Y  GAS M I X T U R E  A N D  CATALYTIC 
WALL 

3.1. The model and gorerning equations 
The model is the same as in Section 1 except that 

the slot is filled with a binary perfect gas mixture, one 
component of  which A, undergoes a phase change at 
.x - 0 while the other, B, is inert (Fig. 3). 

The Navier Stokes equations are coupled with the 
species transport equations which can be written as 

( ~; ) - ~ L e  Pr p Le w,+ u 5 ~v,-  e~w, ,  (50) 

Le = ;,/D, where D is the diffusion coefficient, Le 
the Lewis number, and W the weight fraction of  A. 

The state equation is that of a perfect gas mixture 

P = pz~T 

where 

~' Ms - -  M A  1 
z ~ = ~ -  and : t -  W + - -  

:to M a Ms MB 

where MA and MB are the molar masses of  A and B. 
The initial and boundary conditions are the same 

as in Section 1, except for the velocity at x = 0 for 
which the species balance can be written as 

W r 
u - a t  x = 0 ( 5 1 )  

tbr which it has been supposed that the transfer at the 
interface is diffusion limited [8]. W~, is the equilibrium 
weight fraction defined by 

p~(T) 

p 

where p~(T) is the equilibrium value of  the partial 
specific mass of  A which is dependent on the interface 
temperature. 

As the end at x = 1 is closed the boundary condition 
for W is of  the Neuman type 

3.2. Outer solution 
3.2.1. Scaling and 9overnin 9 equations. In the same 

way as in Section 2.3.1, the solution is looked for on 
the time scale of  the perturbation. Taking into account 
expansions (11)-(13) and (14) and (15) as well as 

W = 14% + v fP(x, F) + o(v) q 54) 

the governing equations for the outer solution are 

t 5 , = ~'sin t- 

P = ?+f i+~F"  

k I M B  - -  Ma 1 

- k~ W~,k,_" k~ M A M ,  k: = _ ~  

~ =  - ( 7 -  l)a, 

ff/~= 0 i55} 

with boundary conditions 

7"=0, Vv=-w~fi (0 ,  F), a(0, r) at ~-=0 

7 ~ = 0 ,  ~ f ' , = 0 ,  t i = 0  at x =  I (56) 

and initial conditions 

7 ~ = 0 ,  t i = 0 ,  i f / =  H% at / = 0 .  

The solution for equation (54) for t~" is 

ff'(x, [) = 0 157) 

and boundary condition (56) for u becomes 

= 0  at x = 0 .  (58) 

Equation (57) means that on the time scale of  the 
perturbation which is short compared to the diffusion 
one, no diffusion has time to occur in the bulk. 

However,  as boundary condition (56) for W is not 
satisfied by the core solution (57), this core solution 
is not regular for x = 0. The asymptotic expansion 
(54) for W is not uniform in the neighbourhood of  
x = 0 .  

According to the matched asymptotic expansion 
technique, an inner expansion must be introduced, 
which is constructed with an inner variable z defined 
by 

X 
z -  6@)--*0 when e--*0 (59) 

6(e)' 
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where 3(e) is given by the least degeneracy principle 
applied to the whole diffusion equation written in 
terms of the inner variable z. 

The remainder of  the core solution for u, P, T and 
p, are here too given by equations (23), (24), (27) and 
(26). 

3.3. Boundary layer sohttion at x = 0 
From solution (27) for T(x, t) and boundary con- 

ditions (21) and (56) for W(x, t) two boundary layers 
exist for T a t  x = 0, 1 and for W a t  x = 0. As we are 
essentially interested in what follows in the behaviour 
of the interface, the boundary layer solution near 
x = 0 is only studied. 

3.3.1. Scalin9 and governing equations. In the same 
way as in Section 2.3.1, the outer expansion scaling 
for the thermodynamic variables leads to inner expan- 
sions (28), (30) and (31) for T, P and p. Now con- 
sidering boundary condition (56) for W, it appears 
that the inner expansion for W is 

W = W~o + v i ( z ,  "t) + o(v). (60) 

The least degeneracy principle which matches the tem- 
poral and diffusive terms in equation (50) written in 
terms of the inner variables, that is to say for the 
functions 

W(x,7) = w(6,,7)= if(z,7) 

suggests to consider 

/~/ I / 2 

6 = (61) 

and leads to the inner boundary condition scaling for 
U 

i .  
u = v x / ( e ~ ) P r L e ( ~ , ~ o _ l  ) at x = 0  (62) 

which suggests to consider as the inner expansion for 
U 

u = vx/(eog)a(z, ~) + o(v~/(eo~)). (63) 

This scaling matches with the outer solution as 

lim u(x, 7) = ½vog(bz cos t '+ 0(6)). (64) 
x ~ 0  

This means physically that the thermal disturbance in 
the core caused by the pressure work induces velocity 
disturbances in the boundary layer which are of  the 
same order of magnitude as the interface velocity 
induced by density disturbances ; as a matter of fact, 
substituting equation (61) for 6 in equation (64) leads 
to 

~ 6  = ~ x / ( ~ o ) .  

Under these scalings, the governing equations for the 
boundary layer solution near x = 0 are 

P = : +  7%~i ,  P=-P(h 

~ =  - a .  

L = T P r  - t  L . - -  ( 7 -  1)ti: 

1 
i r  = L- T; i : :  (65) 

with boundary conditions 

~ = P r  L e ( W ~ o _ l  ),  i = - w ~ ( 0 ,  t'), 

T = 0  at z = 0  

matching conditions at z ---, oo 

i(_,,/) - . 0  

~ - 7 - I  
T(z, t )  --, 9--~- sin t" 

(66) 

~ _ ~.~ 

P(z, t) ~ - -~ sin t" 

Z 
g(- , / )  --* ~ cos ? (67) 

and initial conditions 

i = ~ = t ~ = ~ = P = 0  at 7 = 0 .  (68) 

3.3.2. Boundary layer solutions for  W. The boundary 
layer solution is obtained by the Laplace transform 
technique from equations (65)-(68) for W 

- ~ -  e-d((e~Le),'2):sin 7-- ~ z 

+ n  J0 ~ s i n ( - x / ( L e P r u ) ) d u  . (69) 

The second term represents a transient state and the 
first term represents a damped travelling concentra- 
tion wave. The penetration length for the permanent 
state 

2 '~t,,2 
l, = \ C e T ; /  6 

is of the order of the boundary layer thickness 6, and 
the velocity of the travelling wave 

2 "]t/2 

is larger than the diffusion velocity. 
3.3.3. Boundary layer solution for  T. Substituting 

for ~_. in equation (65) for T, equation (65) for fi and 
/~, it gives 

7 - 1  ~ , ~  
Tr = Pr- '  L_- + T (Pr-- g WT). (70 )  

In order to reach a simplified description of the prob- 
lem, we choose to ignore the solutal effects, that is to 
say that we suppose M A = M B  in order to have 
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:] = 0 .  (71) 

In these conditions, equation (65) and matching con- 
ditions (67) foi-/~, equation (65) for ~ and conditions 
(66) and (67) define the same problem as in Section 
2.3.2 and solution for i? in the case where Ma = JIB 
(,-" = 0) is thus equation (45). 

3.3.4. Boundary layer solution jb r  u. From equation 
(65) for ~7. and ,8 and taking into account condition 
(71), it comes under integration of  the obtained equa- 
tion over z 

Table 1. Comparison between velocity per- 
turbations and Stefan velocity for two growth 

conditions. L = 10 cm 

Case I Case 2 

C;~ (m s " )  130 I30 
P'(Torr)  O. 1 1 

D" (cmZs-') 120 15.4 
U's~s. (llms i) 4.86x I0' 0.440 

U' (/~ms-~): interface 0.835 0.282 
bulk 7.5 7.5 

E~(z,t') = Pr i ~ - _ _  pr+c~,~,  (72) 
7 

From solution (45) for 7~(_ -, t), boundary condition 
(66) for h at z = 0 and solution (69) for if/, solution 
for L7 is. if the transient term is ignored 

/') _ 7 - I I~(Z, 2 ( 2 P r ) - 1 2 ( e  ,{p¢2),: 

× i" Pr 

- ( s i n / + c o s / ' ) }  

W~, z 
( s in / '+cos  T)+ 5cos / .  

2Le x/(2Pr) ( W, ~, - 1) 

(73) 

The first two terms in equation (73) represent the 
contribution of  the thermal disturbances in the 
boundary layer, to the fluid velocity. 

The third term is the contribution of  the phase 
change at the interface at z = 0 ; the fourth term is the 
driving velocity field in the bulk as x + 0. 

Taking now the limit when z--+ m for u(z, t) with 
x << 1 and x --+ 0, it becomes 

X 
lim u( z,/') = re0 5- cos E+ veJ6(2Pr)- '"'-(sin [ + c o s  t) 

2 ke  ( W~o -- 

= l i m  u(x, ~) + O(v{oS). 

The matching conditions are fulfilled and the term 
O(vco6) represents the velocity at the edge of  the 
boundary layer which gives the order of  magnitude 
of  the next term in the outer expansion for u. This 
oscillating piston effect will drive a new disturbance 
of mechanical origin in the core ; the driving velocity 
Up for this perturbation is 

Up = U(0,/-) = (2Pr) '2(sin [ 

+cos/-)  2 2Le(W~o - 1) ' 

Term I represents the overall expansion of  contraction 
of  the boundary layer under the thermal disturbances 
of the core flow caused by the work of pressure forces. 
Term II represents the expansion or contraction of  
the boundary layer due to the evaporation or con- 
densation of the crystal under mechanical (density) 
disturbances in the bulk. 

It must be emphasized that no solutal effect is p,'c- 
sent because ~ = 0: when ~ ¢ 0 [9] diffusion of  a 
heavy specie for example will cause an increase in p 
and a contraction of  the boundary layer and this 
phenomenon is not taken into account here. 

4. O R D E R  O F  M A G N I T U D E  

It has been shown that the order of magnitude of 
the velocity in the bulk at the interface was the same 
as that of the velocity in the boundary htyer, that is 
to say 

zt = O ( % ' ( e ~ o ) )  

while the velocity perturbation in the bulk is of  the 
order of vco'. Comparison of  these velocity per- 
turbations with the typical velocity encountered in 
HgI,  growth experiments are summarized on Table 1. 
For  systems for which the pressure is 0.1 Torr  or less, 
growth rates between 1 and 0.5 mm day ~ have been 
observed [10] and are represented by case 1. 

For  pressure increases of about 1 Torr  of argon, 
the growth rates are very low because the diffusion 
strongly decreases and growth velocities as low as 
10 5 mm day ' have been observed and are rep- 
resented by case 2. 

It has been supposed that the order of  magnitude of  
the velocity perturbation is independent of  the initial 
conditions. As a matter of fact, in order to compare 
with typical growth rates, a different initial value prob- 
lem should have been studied for which the basic 
flow is a Stefan flow between a source and a sink. 
Nevertheless it can be seen in Table I that for low 
pressure systems, both intert~acial and bulk per- 
turbations are negligible compared to the Stefan wind. 
However, for case 2, the bulk perturbation is one 
decade higher than the basic flow while the interfacial 
velocity perturbation is of the same order as the Stefan 
velocity. This points out that for high pressure exper- 
iments for which the growth velocity is very small, 
perturbations caused by .q-jitters may be taken into 
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account. On the other hand, in some experiments such 
as epitaxial growth of  germanium, the etching of  the 
substrate to which corresponds very small velocities 
[l l, 12] may come from such mechanical pertur- 
bations. 

for the species equations and would lead to a phys- 
ically more significant description. Moreover,  a gener- 
alization of  this study to higher frequency for which 
acoustic modes could be excited would certainly lead 
to interesting new features concerning interaction 
between acoustics and crystal growth. 

5. CONCLUSION 

The core and boundary layer solutions have been 
obtained for the response of  a solid-gas growth inter° 
lace to small periodic disturbances of  a basically zero 
gravity field. 

It has been shown that for typical values of  the per- 
turbations in the gravity encountered onboard  space- 
crafts in low earth orbit, say 10-2#0 and f = 50 Hz, 
the perturbation in the core velocity is of  the order o f  
10 -4 cm s -  t while the perturbation in the velocity at 
the interface may be o f  the same order as the Stefan 
velocity for high pressure growth conditions when 
considering mercury iodide typical values. This means 
that unless very small growth velocities are considered 
as it is the case for some epitaxial growth processes, 
.q-jitters, as those encountered in spacecrafts have neg- 
ligible effects on the mass transfer. However,  the per- 
turbations in weight fraction at the interface are o f  
the order of  10- 7 ; under steady state growth, and not, 
as in the present case, under thermodynamic equi- 
librium reference state, will these oscillations produce 
significant oscillations in dopant  concentration in the 
grown crystal. This would be interesting to check 
experimentally. 

On the other hand, it would be interesting to look 
at the influence of  the molar  mass difference on the 
contraction or  expansion of  the boundary layer. In 
the same way, non-equilibrium transfer could be 
introduced through mixed type boundary conditions 
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REPONSE D'UNE INTERFACE DE SOLIDIFICATION SOL.IDE-GAZ A UN CHAMP 
D'ACCELERATION HOMOGENE DEPENDANT DU TEMPS 

R6sum6--La technique des d~veloppements asymptotiques raccord6es est utilis6e pour analyser les solu- 
tions int6rieures et ext~rieures des ~quations de Navier-Stokes I-D instationnaire et compressible pour 
&udier le transport 5. une interface dfi 5. un champ d'acc~16ration faible et variant sinuso'idalement dans le 
temps de mani~re lente. 11 est montr~ que: (a) le transfer de masse 5. l'interface est gouvern~ par la 
d6pendance temporelle de la masse sp6cifique du gaz sur l'interface ; (b) la diffusion des esp~ces intervient 
dans une couche limite mince situ6e devant l'interface de croissance : (c) fi moins de consid~rer des vitesses 
de croissance tr~s faibles comme c'est le case pour certains proc~d~s de croissance 6pitaxiale, les g-jitters 
tels qu'on les rencontre 5. bord des v~hicules spatiaux ont des effets n6gligeables sur le transfert de masse 

5. un interface de croissance solide gaz. 



Response of a solid -gas growth interface to a homogeneous  time dependent acceleration field I~,7 

V E R H A L T E N  EINER W A C H S E N D E N  P H A S E N G R E N Z F L , ~ C H E  ZWISCHEN FESTEM 
U N D  G A S F O R M I G E M  Z U S T A N D  [N EINEM H O M O G E N E N ,  ZEITLICH 

VE R .~NDE R L IC HE N B E S C H L E U N [ G U N G S F E L D  

Zusammenfassung- -Das  Verfahren der angepa[3ten asymptotischen Entwicklungen vdrd zur L6sung dcr 
kompressiblen, instation,~iren, reibungsbehafteten Navier-Stokes-Gleichungen ftir den Kern- und Grcnz- 
schichtbereich verwendet. Damit  sollen die Transportvorg~inge an der Grenzfl~iche beim Kristallwachs- 
turn untersucht  werden, die sich infolge eines homogenen,  zeitlich sinusf6rmig und langsam verfinderlichen 
Beschleunigungsfeldes ergeben. Es zeigt sich folgendes: (a) Der Stofftransport an der Grenzfifiche ~ird 
yon der Zeitabh:~ingigkeit der spezifischen Masse an der isothermen aktiven Grenzfliiche bestimmt: (b) in 
einer dfinnen Grenzschicht unmittelbar vor der Grenzflfiche tritt Diffusion aufgrund einer gedfimpften, 
wandernden Konzentrationsw.elle auf; (c) auBer bei sehr kleinen Wachstumsgeschwindigkeiten. x~ie 
sie bei einigen epitaxialen Wachstumsvorgfingen vorkommen, haben g-Gitter einen vernachlfissigbaren 

Einfluf3 au fden  Stofl'transport an einer lest gasf6rmigen Wachstumsoberflfiche, 

BYIH.flHHE O ~ H O P O J ~ H O F O  H E C T A I . i H O H A P H O F O  FIOSDI YCKOPEHHSI HA POCT 
F P A H H U b I  PA3~E.IIA TBEP,~IOE TEfIO--FA3 

~ T a u m ~ - - - M e T o a o M  cpaH.I.HBaHHS[ aCHMnTOTHqeCKHX pa3YlO~eHH~ aHa~H3Hpy]oTC~I pemeHHfl ypaBHe- 
HHfi HaBbc-CToKCa ~ g  HeCTaLUtOHapHOFO TCqCHHfl CXHMaCMOfi Bg3tOfi XH~KOCTH B fl~[pc H norpaNnq- 
HOrn caoe npH nec~eaoBanHn npouexzca nepeHoea y rpaH.ma pa3~eaa, pac'rymefi B pe3y~Tare  ~e~c'rBn~ 
O~.HOpO~oro, e H H y e o . a a ~ n o r o  Bo BpeMenn . Mea.~enno .3Mensmmeroea  eaa6oro  noa~ cn.ab[ 
TflXo~YrH. l-[oKa3aHo, qTO: (a) MacconepeHOC o n H c l d n a e T c n  BpCMeHHOfi 3aBHCHMOCTbIO yaeabnog Macc~ y 
H3oTepMHtlecKo~ aKTHBHO~ rpaHHI1hl paaaeaa;  (6) ~IHq~py3Hg npoHcxoIIHT B TOHKOM norpaHlt~lHOM cJloe 
nepea rpanHue~ pa3~eaa B BYte 3aTyxamme~ 6eryme~ Bonus[ KoaueHTpaLmH; (B) 3a n c ~ m ~ e , n e M  
c~lyqaea OqeHb HtI3KHX cKopoc-re.~ pocra.  HM~IOIZIHX MeCTO npn HeKOTOpbIx npoueccax 3IIHTaKCHaJIbHOFO 
pOCTa. Ha6~o~laeM~e Ha KOCMHqeCKHX Kopa6~flX H3MeHeHHR yCKOI~HHX OKa31aIBaK~T He3HaqHTe~IbHOe 

B.qH$IHHe Ha M~C~OHep~HOC y pacTytUefi FpaHHllbl pa3~c.qa TBep~oe TeJ10--Fa3. 


